If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-156x-182=0
a = 1; b = -156; c = -182;
Δ = b2-4ac
Δ = -1562-4·1·(-182)
Δ = 25064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25064}=\sqrt{4*6266}=\sqrt{4}*\sqrt{6266}=2\sqrt{6266}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-156)-2\sqrt{6266}}{2*1}=\frac{156-2\sqrt{6266}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-156)+2\sqrt{6266}}{2*1}=\frac{156+2\sqrt{6266}}{2} $
| 85=9x+4 | | 5y-3/5=4/5+3/5 | | -32=y+3y+16 | | 3yy=9 | | 85=9x=4 | | B+1=b/2 | | 4r-3=3(3r-4) | | -10n+3(8=8n)=-6(n-4) | | 562/5=8(-14/5b-11/4) | | a7/10=392 | | -4/3u=-16 | | 1x-4=-3x+4 | | 5x-16=89 | | 5+6(2n-5)=8n-5 | | 0.18(y-6)+0.10y=0.12y-1.8 | | 6x+4x-3=15+7x | | (x-8)^2-1=0 | | X÷5x=35 | | 13z-12z=6 | | 3y-y-1=29 | | 3(t-10)-4=-4 | | (3m+1)^2-5=0 | | 2x+5=5- | | |x+8|=|x-5| | | .33x+7=4 | | 43=8x-2+9-10x | | -4.9x^2+19x+40=0 | | 10=x/46 | | 135/7=10/7x | | b+0.6=7 | | 17m-13m+5=13 | | n^2-12n-98=-9 |